Kontrol Keamanan Brankas Kamar
(Vibration Sensor, Magnetic Sensor, Infrared Sensor dan Touch Sensor)
1. Tujuan [Kembali]
a. Mengetahui dan memahami prinsip kerja Flip Flop
b. Mengetahui dan memahami prinsip kerja Vibration Sensor
c. Mengetahui dan memahami prinsip kerja Magnetic Sensor
d. Mengetahui dan memahami prinsip kerja Infrared Sensor
e. Mengetahui dan memahami prinsip kerja Touch Sensor
2. Alat dan Bahan [Kembali]
A. Alat
Power Supply
Spesifikasi :
Input voltage: 5V-12VOutput voltage: 5VOutput Current: MAX 3AOutput power:15Wconversion efficiency: 96%
· Battery
- Input voltage: ac 100~240v / dc 10~30v
- Output voltage: dc 1~35v
- Max. Input current: dc 14a
- Charging current: 0.1~10a
- Discharging current: 0.1~1.0a
- Balance current: 1.5a/cell max
- Max. Discharging power: 15w
- Max. Charging power: ac 100w / dc 250w
- Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
- Ukuran: 126x115x49mm
- Berat: 460gr
· DC Voltmeter
- Bahan
1. Resistor
Spesifikasi:
Resistance (Ohms) : 220 V
Power (Watts) : 0,25 W, ¼ W
Tolerance : ± 5%
Packaging : Bulk
Composition : Carbon Film
Temperature Coefficient : 350ppm/°C
Lead Free Status : Lead Free
RoHS Status : RoHs Complient
2. Relay
Spesifikasi:
4. Buzzer
Spesifikasi:
- Type - NPN
- Collector-Emitter Voltage: 35 V
- Collector-Base Voltage: 35 V
- Emitter-Base Voltage: 5 V
- Collector Current: 2.5 A
- Collector Dissipation - 10 W
- DC Current Gain (hfe) - 100 to 200
- Transition Frequency - 160 MHz
- Operating and Storage Junction Temperature Range -55 to +150 °C
- Package - TO-126
6. Sensor magnet (Reed Switch)
Spesifikasi:
7. OP AMP
Konfigurasi Pin
8. Sensor Vibration
9. Diode
Spesifikasi :
12. Logicstate
13 . Touch Sensor
Spesifikasi :
- Operating voltage 2.0V~5.5V
- Operating current @VDD=3V, no load
- At low power mode typical 1.5uA, maximum 3.0uA
- The response time max 220mS at low power mode @VDD=3V
- Sensitivity can adjust by the capacitance(0~50pF) outside
- Stable touching detection of human body for replacing traditional direct switch key
- Provides Low Power mode
- Provides direct mode、toggle mode by pad option(TOG pin) Q pin is CMOS output
- All output modes can be selected active high or active low by pad option(AHLB pin)
- After power-on have about 0.5sec stable-time, during the time do not touch the key pad, and the function is disabled
- Auto calibration for life at low power mode the re-calibration period is about 4.0sec normally, when key detected touch and released touch, the auto re-calibration will be redoing after about 16sec from releasing key
- The sensitivity of TTP223N-BA6 is better than TTP223-BA6’s. but the stability of TTP223N-BA6 is worse than TTP223-BA6’s.
3. Dasar Teori [Kembali]
1. Resistor
Resistor atau hambatan adalah salah satu komponen elektronika yang memiliki nilai hambatan tertentu, dimana hambatan ini akan menghambat arus listrik yang mengalir melaluinya. Sebuah resistor biasanya terbuat dari bahan campuran Carbon. Namun tidak sedikit juga resistor yang terbuat dari kawat nikrom, sebuah kawat yang memiliki resistansi yang cukup tinggi dan tahan pada arus kuat. Contoh lain penggunaan kawat nikrom dapat dilihat pada elemen pemanas setrika. Jika elemen pemanas tersebut dibuka, maka terdapat seutas kawat spiral yang biasa disebut dengan kawat nikrom.
Resistor berfungsi sebagai penghambat arus listrik. Jika ditinjau secara mikroskopik, unsur-unsur penyusun resistor memiliki sedikit sekali elektron bebas. Akibatnya pergerakan elektronya menjadi sangat lambat. Sehingga arus yang terukur pada multimeter akan menunjukan angka yang lebih rendah jika dibandingkan rangkaian listrik tanpa resistor.
Simbol dari resistor merupakan sebagai berikut :
Cara Menghitung Nilai Resistor
Berdasarkan bentuknya dan proses pemasangannya pada PCB, Resistor terdiri 2 bentuk yaitu bentuk Komponen Axial/Radial dan Komponen Chip. Untuk bentuk Komponen Axial/Radial, nilai resistor diwakili oleh kode warna sehingga kita harus mengetahui cara membaca dan mengetahui nilai-nilai yang terkandung dalam warna tersebut sedangkan untuk komponen chip, nilainya diwakili oleh Kode tertentu sehingga lebih mudah dalam membacanya.
1) Berdasarkan Kode Warna
Seperti yang dikatakan sebelumnya, nilai Resistor yang berbentuk Axial adalah diwakili oleh Warna-warna yang terdapat di tubuh (body) Resistor itu sendiri dalam bentuk Gelang. Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.
Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.
Tabel dibawah ini adalah warna-warna yang terdapat di Tubuh Resistor:
- 4 Gelang Warna
- 5 Gelang Warna
Contoh-contoh perhitungan lainnya :
Merah, Merah, Merah, Emas → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm dengan 5% toleransi
Kuning, Ungu, Orange, Perak → 47 * 10³ = 47.000 Ohm atau 47 Kilo Ohm dengan 10% toleransi
Cara menghitung Toleransi :
2.200 Ohm dengan Toleransi 5% = 2200 – 5% = 2.090
2200 + 5% = 2.310
ini artinya nilai Resistor tersebut akan berkisar antara 2.090 Ohm ~ 2.310 Ohm
Untuk mempermudah menghafalkan warna di Resistor, kami memakai singkatan seperti berikut:
HI CO ME O KU JAU BI UNG A PU
(HItam, COklat, MErah, Orange, KUning. HiJAU, BIru, UNGu, Abu-abu, PUtih)
2) Berdasarkan Kode Angka
Membaca nilai Resistor yang berbentuk komponen Chip lebih mudah dari Komponen Axial, karena tidak menggunakan kode warna sebagai pengganti nilainya. Kode yang digunakan oleh Resistor yang berbentuk Komponen Chip menggunakan Kode Angka langsung jadi sangat mudah dibaca atau disebut dengan Body Code Resistor (Kode Tubuh Resistor)
Contoh :
Kode Angka yang tertulis di badan Komponen Chip Resistor adalah 4 7 3;
Contoh cara pembacaan dan cara menghitung nilai resistor berdasarkan kode angka adalah sebagai berikut :
Contoh-contoh perhitungan lainnya :
Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :
Dimana V adalah tegangan, I adalah kuat arus, dan R adalah Hambatan
Relay merupakan komponen elektronika berupa saklar atau swirch elektrik yang dioperasikan secara listrik dan terdiri dari 2 bagian utama yaitu Elektromagnet (coil) dan mekanikal (seperangkat kontak Saklar/Switch). Komponen elektronika ini menggunakan prinsip elektromagnetik untuk menggerakan saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Berikut adalah simbol dari komponen relay.
Gambar bagian-bagian relay:
Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :
- Apabila coil diberikan arus listrik, maka akan timbul gaya elektromagnetik yang dapat menarik armature untuk merubah switch contact point.
- Apabila coil tersebut sudah tidak dialiri arus listrik, maka Armature akan kembali lagi ke posisi Normally Close.
- Umumnya, coil yang digunakan oleh relay untuk mengubah switch contact point ke posisi NC hanya membutuhkan arus listrik yang kecil.
Lampu Listrik adalah suatu perangkat yang dapat menghasilkan cahaya saat dialiri arus listrik. Arus listrik yang dimaksud ini dapat berasal tenaga listrik yang dihasilkan oleh pembangkit listrik terpusat (Centrally Generated Electric Power) seperti PLN dan Genset ataupun tenaga listrik yang dihasilkan oleh Baterai dan Aki.
Jenis Jenis Lampu Listrik
Seiring dengan perkembangan Teknologi, Lampu Listrik juga telah mengalami berbagai perbaikan dan kemajuan. Teknologi Lampu Listrik bukan saja Lampu Pijar yang ditemukan oleh Thomas Alva Edison saja namun sudah terdiri dari berbagai jenis dan Teknologi. Pada dasarnya, Lampu Listrik dapat dikategorikan dalam Tiga jenis yaitu Incandescent Lamp (Lampu Pijar), Gas-discharge Lamp (Lampu Lucutan Gas) dan Light Emitting Diode (Lampu LED).
Lampu Pijar (Incandescent Lamp)
Lampu Pijar atau disebut juga Incandescent Lamp adalah jenis lampu listrik yang menghasilkan cahaya dengan cara memanaskan Kawat Filamen di dalam bola kaca yang diisi dengan gas tertentu seperti nitrogen, argon, kripton atau hidrogen. Kita dapat menemukan Lampu Pijar dalam berbagai pilihan Tegangan listrik yaitu Tegangan listrik yang berkisar dari 1,5V hingga 300V.
Lampu Pijar yang dapat bekerja pada Arus DC maupun Arus AC ini banyak digunakan di Lampu Penerang Jalan, Lampu Rumah dan Kantor, Lampu Mobil, Lampu Flash dan juga Lampu Dekorasi. Pada umumnya Lampu Pijar hanya dapat bertahan sekitar 1000 jam dan memerlukan Energi listrik yang lebih banyak dibandingkan dengan jenis-jenis lampu lainnya.
Lampu Lucutan Gas (Gas discharge Lamp)
Lampu lucutan gas menghasilkan cahaya dengan mengirimkan lucutan elektris melalui gas yang terionisasi, misalnya pada plasma. Sifat lucutan gas sangat tergantung pada frekuensi atau modulasi arus listriknya. Biasanya, lampu lampu ini menggunakan gas mulia (argon, neon, kripton, dan xenon) atau campuran dari gas-gas tersebut. Sebagian besar lampu-lampu ini juga mengandung bahan-bahan tambahan, seperti merkuri, natrium, dan/atau halida logam.
Lampu LED (Light Emitting Diode)
Lampu LED adalah komponen elektronika yang dapat memancarkan cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya.
Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.
Terdapat rumus rumus dalam mencari transistor seperti rumus di bawah ini:Rumus dari Transitor adalah :
hFE = iC/iB
dimana, iC = perubahan arus kolektor
iB = perubahan arus basis
hFE = arus yang dicapai
- Karakteristik Input
Transistor adalah komponen aktif yang menggunakan aliran electron sebagai prinsip kerjanya didalam bahan. Sebuah transistor memiliki tiga daerah doped yaitu daerah emitter, daerah basis dan daerah disebut kolektor. Transistor ada dua jenis yaitu NPN dan PNP. Transistor memiliki dua sambungan: satu antara emitter dan basis, dan yang lain antara kolektor dan basis. Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan dioda kolektor-basis, atau disingkat dengan dioda kolektor.
Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.
- Karakteristik Output
Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.
Gelombang I/O Transistor
Simbol
Karakteristik IC OpAmp
· Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
· Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
· Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
· Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
· Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
· Karakteristik tidak berubah dengan suhu
Inverting Amplifier
Rumus:
NonInverting
Rumus:
Komparator
Rumus:
Adder
Rumus:
Bentuk Gelombang
Sensor magnet adalah sensor yang mudah terpengaruh dan peka terhadap medan magnet kemudian memberikan perubahan kondisi output. Prinsip kerja Sensor magnet yaitu akan aktif ketika konduktor mempengaruhi medan magnet, sehingga magnet tersebut tertolak atau tertarik sesuai dengan pengaruh konduktor yang diberikan.
Sensor Magnet atau disebut juga relai buluh, adalah alat yang akan terpengaruh medan magnet dan akan memberikan perubahan kondisi pada keluaran. Seperti layaknya saklar dua kondisi (on/off) yang digerakkan oleh adanya medan magnet di sekitarnya. Biasanya sensor ini dikemas dalam bentuk kemasan yang hampa dan bebas dari debu, kelembapan, asap ataupun uap.
Prinsip Sensor Magnet :
Sensor Magnet adalah berdasarkan Hukum Faraday dimana apabila sebuah penghantar memotong suatu medan magnet maka pada kedua ujung penghantar tersebut akan menimbulkan Gaya Gerak Listrik (GGL)) atau Electromagnetic Force (Emf). Besaran Emf tersebut adalah tergantung kepada kuat medan magnet dan kecepatan pemotongan. Apabila Sensor tersebut menerima getaran maka batang magnet tersebut akan ikut bergetar dan medan magnet tersebut akan terpotong-potong oleh gulungan kawat sehingga kedua ujung gulungan kawat tersebut akan menimbulkan tegangan.
Grafik Respon:
7. Sensor Vibration
Sensor vibrasi SW420 adalah suatu alat yang berfungsi untuk mendteksi adanya getaran dan akan diubah ke sinyal listrik. cara kerja sensor ini dengan menggunakan satu buah pelampung logam yang akan bergetar di tabung yang berisi 2 elektroda ketika sensor menerima getaran. Terdapat 2 output digital (0 dan 1) dan analog output.
- Tegangan operasi 3,3 V hinggan 5V DC
- LED menunjukkan keluaran dan daya
- Desain berbasis LM393
- Mudah digunakan dengan mikrokontroler atau IC digital/analog normal
- Dengan lubang baut untuk memudahkan pemasangan
Grafik Respon:
8. Sensor Touch
Jenis-jenis Sensor Sentuh
Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.
Sensor Kapasitif
Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.
Sensor Resistif
Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.
Grafik Sensor :
9. Dioda
Diode (diode) adalah komponen elektronika aktif yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Berikut ini adalah fungsi dari dioda antara lain:
· Untuk alat sensor panas, misalnya dalam amplifier.
· Sebagai sekering(saklar) atau pengaman.
· Untuk rangkaian clamper dapat memberikan tambahan partikel DC untuk sinyal AC.
· Untuk menstabilkan tegangan pada voltage regulator
· Untuk penyearah
· Untuk indikator
· Untuk alat menggandakan tegangan.
· Untuk alat sensor cahaya, biasanya menggunakan dioda photo.
Simbol dioda adalah :
Untuk menentukan arus zenner berlaku persamaan:
Perhatikan tabelk kebenaran gerbang OR
Gambar Rangkaian Dasar D Flip-Flop Pada gambar diatas input Set (S) dihubungkan ke input Reset (R) pada RS flip-flop menggunakan sebuah inverter sehingga terbentuk input atau masukan baru yang diberi nama input Data (D). Dengan kondisi tersebut maka RS flip-flop berubah menjadi Data Flip-Flop (D-FF). Pada perkembanganya D flip flop ini ditambahkan dengan input atau masukan control berupa enable/clock seperti ditunjukan pada gambar berikut.
12. Infrared Sensor
Sensor Infrared adalah komponen elektronika yang dapat mendeteksi benda ketika cahaya infra merah terhalangi oleh benda. Sensor infared terdiri dari led infrared sebagai pemancar sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.
Grafik respon:
Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.
4. Prosedur Percobaan [Kembali]
Buka aplikasi proteus
Siapkan alat dan bahan pada library proteus, komponen yang dibutuhkan pada rangkaian
Rangkai setiap komponen
Ubah spesifikasi komponen sesuai kebutuhan
Jalankan simulasi rangkaian
5. Rangkaian Simulasi [Kembali]
Prinsip kerja :
Pada rangkaian ini
sensor magnet akan berlogika 1 ketika terdeteksi magnet (posisi brankas
menempel di dinding) dan ketika brankas di lepas dari dinding atau di geser
dari tempat semula maka sensor magnet akan berjarak, tidak terdeteksi lagi
medan magnet, maka sensor berlogika 0, dimana arus akan keluar dari DO(
saklar buluh terbuka ), maka output sensor akan mengeluarkan tegangan sebesar 5
volt menuju D flip flop yaitu masuk clk yaitu berlogika 0 lalu di umpan ke D=1
maka output pada Q=0 dimana output dari Q dihubungkan ke kaki gerbang OR yaitu
input berlogika 1 sedangkan pada Q'=1 dimana output dari Q' juga dihubungkan ke
kaki gerbang OR sehingga input dari gerbang OR yaitu berlogia 0:1 sehingga
output dari gerbang OR yaitu 1 diteruskan ke R1..
Kemudian tegangan sebesar 5 volt diteruskan ke input
non inverting op amp dengan tegangan yg masuk sebesar 5 volt dan tegangan yg
masuk ke inverting nol maka rumus outputnya adalah tegangan 5 volt dikurang 0
yaitu 5 volt maka outputnya plus satu rasi yaitu +15 volt dimana rangkaian ini
adalah rangkaian detektor non inverting.
Kemudian pada output op amp yang bertegangan 15V
diteruskan ke R3 lalu ke basis Q1 dengan tegangan terukur sebesar 0.88 volt
maka transistor on. Kalau transistor on, maka ada arus dari kolektor ke emiter,
dengan adanya arus dari kolektor ke emiter maka ada arus dari B2 lalu melewati
diode lalu ke relay lalu ke kolektor lalu ke emiter lalu ke ground.
Karena adanya arus lewat relay maka switch relay
akan berpindah ke kiri. Sehingga ada arus dari baterai masuk ke lampu sehingga
lampu aktif.
Ketika sensor vibrasi mendeteksi getaran, yaitu
sensor berlogika 1, maka output sensor akan mengeluarkan tegangan sebesar 5
volt menuju ke R2.
Kemudian tegangan sebesar 5 volt diteruskan ke input
non inverting op amp dengan tegangan yg masuk sebesar 5 volt dan tegangan yg
masuk ke inverting nol maka rumus outputnya adalah tegangan 5 volt dikurang 0
yaitu 5 volt maka outputnya plus satu rasi yaitu +15 volt dimana rangkaian ini
adalah rangkaian detektor non inverting.
Kemudian pada output op amp yang bertegangan 15V
diteruskan ke R4 untuk memperkecil arus yang masuk ke kaki basis transistor ,
maka kaki basis transistor Q2 terukur tegangan sebesar 0.88 volt maka
transistor on. Jika transistor Q2 on, maka ada arus dari kolektor ke emiter,
dengan adanya arus dari kolektor ke emiter maka ada arus dari B3 melewati diode
lalu ke relay lalu ke kolektor lalu ke emiter lalu ke ground.Karena adanya arus
lewat relay maka switch relay berpindah ke kanan. Sehingga ada arus dari
baterai masuk ke buzer sehingga buzer aktif.
7. Download File [Kembali]
Download HTML klik
Download Video klik
Download Rangkaian Simulasi Prinsip Kerja klik
Download Rangkaian Simulasi Ngerangkai klik
Download Datasheet Resistor klik
Download Datasheet op amp klik
Download Datasheet Relay klik
Download Datasheet Buzzer klik
Download Datasheet Transistor klik
Download Datasheet Lampu klik
Download Datasheet Sensor Vibration klik
Download Datasheet Sensor magnet klik
Download Datasheet Sensor Touch klik
Download Datasheet Sensor Infrared klik
Download Datasheet Diode klik
Download Datasheet D flip flop klik
Download Library Sensor Vibration klik
Download Library Sensor magnet klik
Download Library Sensor Touch Klik
Download Library Infrared Klik
Tidak ada komentar:
Posting Komentar